A scaling approach to project regional sea level rise and its uncertainties

Material Information

Title:
A scaling approach to project regional sea level rise and its uncertainties
Series Title:
Earth System Dynamics Volume 4
Creator:
Perrette, M.
Landerer, F.
Riva, R.
Frieler, K.
Meinshausen,M.
Affiliation:
Potsdam Institute for Climate Impact Research
Jet Propulsion Laboratory -- California Institute of Technology
Delft University of Technology -- Department Geoscience and Remote Sensing -- TU Delft Climate Institute
Postdam Institute for Climate Impact Research
Potsdam Institute for Climate Impact Research
Publisher:
Copernicus Publications
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Climate change ( lcsh )
Sea level rise ( lcsh )
Ice sheets ( lcsh )
Ice caps ( lcsh )

Notes

Abstract:
Climate change causes global mean sea level to rise due to thermal expansion of seawater and loss of land ice from mountain glaciers, ice caps and ice sheets. Locally, sea level can strongly deviate from the global mean rise due to changes in wind and ocean currents. In addition, gravitational adjustments redistribute seawater away from shrinking ice masses. However, the land ice contribution to sea level rise (SLR) remains very challenging to model, and comprehensive regional sea level projections, which include appropriate gravitational adjustments, are still a nascent field (Katsman et al., 2011; Slangen et al., 2011). Here, we present an alternative approach to derive regional sea level changes for a range of emission and land ice melt scenarios, combining probabilistic forecasts of a simple climate model (MAGICC6) with the new CMIP5 general circulation models. The contribution from ice sheets varies considerably depending on the assumptions for the ice sheet projections, and thus represents sizeable uncertainties for future sea level rise. However, several consistent and robust patterns emerge from our analysis: at low latitudes, especially in the Indian Ocean and Western Pacific, sea level will likely rise more than the global mean (mostly by 10–20 %). Around the northeastern Atlantic and the northeastern Pacific coasts, sea level will rise less than the global average or, in some rare cases, even fall. In the northwestern Atlantic, along the American coast, a strong dynamic sea level rise is counteracted by gravitational depression due to Greenland ice melt; whether sea level will be above- or below-average will depend on the relative contribution of these two factors. Our regional sea level projections and the diagnosed uncertainties provide an improved basis for coastal impact analysis and infrastructure planning for adaptation to climate change. ( English )

Record Information

Source Institution:
Florida International University
Rights Management:
Please contact the owning institution for licensing and permissions. It is the user's responsibility to ensure use does not violate any third party rights.

Related Items

Host material:
FULL TEXT

dpSobek Membership

Aggregations:
Sea Level Rise